




This page intentionally left blank 





Editorial Director, ECS Marcia Horton
Acquisitions Editor Matt Goldstein
Program Manager Kayla Smith-Tarbox
Director of Marketing Christy Lesko
Marketing Assistant Jon Bryant
Director of Production Erin Gregg
Senior Managing Editor Scott Disanno
Senior Project Manager Marilyn Lloyd
Manufacturing Buyer Linda Sager
Cover Designer Joyce Cosentino Wells
Manager, Text Permissions Tim Nicholls
Text Permission Project Manager William Opaluch
Media Project Manager Renata Butera
Full-Service Project Management Cypress Graphics, Paul C. Anagnostopoulos
Printer/Binder Courier Kendallville
Cover Printer Lehigh Phoenix-Color
Text Font Minion and Avenir

Cover Image: One frame of a particle physics simulation created with DomeGL, a version of
OpenGL designed for generating images for multiprojector domed environments. Used with
permission from Matthew Dosanjh, Jeff Bowles, and Joe Kniss, ARTS Lab, University of New
Mexico.

Credits and acknowledgments borrowed from other sources and reproduced, with permission,
appear on the appropriate page in the text.

Copyright © 2015, 2012, 2009 Pearson Education, Inc., publishing as Addison-Wesley. All rights
reserved. Printed in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They have been tested with care, but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any liabilities with
respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Angel, Edward.
Interactive computer graphics : a top-down approach with WebGL / Edward Angel,

Dave Shreiner. — 7th edition.
pages cm

Includes bibliographical references and indexes.
ISBN-13: 978-0-13-357484-5 (alkaline paper)
ISBN-10: 0-13-357484-9 (alkaline paper)
1. Computer graphics. 2. Interactive computer systems. 3. WebGL (Computer-

program language) 4. OpenGL. I. Shreiner, Dave. II. Title.
T385.A5133 2014
006.6�633—dc23 2013050594

10 9 8 7 6 5 4 3 2 1—V011—18 17 16 15 14

ISBN 10: 0-13-357484-9

ISBN 13: 978-0-13-357484-5



To Rose Mary —E.A.

To Vicki, Bonnie, Bob, Cookie, and Goatee —D.S.



This page intentionally left blank 



CONTENTS

Preface xxi

CHAPTER 1 GRAPHICS SYSTEMS AND MODELS 1

1.1 Applications of Computer Graphics 2
1.1.1 Display of Information 2
1.1.2 Design 3
1.1.3 Simulation and Animation 3
1.1.4 User Interfaces 4

1.2 A Graphics System 5
1.2.1 Pixels and the Framebuffer 5
1.2.2 The CPU and the GPU 6
1.2.3 Output Devices 7
1.2.4 Input Devices 9

1.3 Images: Physical and Synthetic 10
1.3.1 Objects and Viewers 10
1.3.2 Light and Images 12
1.3.3 Imaging Models 13

1.4 Imaging Systems 15
1.4.1 The Pinhole Camera 15
1.4.2 The Human Visual System 17

1.5 The Synthetic-Camera Model 18

1.6 The Programmer’s Interface 20
1.6.1 The Pen-Plotter Model 21
1.6.2 Three-Dimensional APIs 23
1.6.3 A Sequence of Images 26
1.6.4 The Modeling–Rendering Paradigm 27

1.7 Graphics Architectures 28
1.7.1 Display Processors 29
1.7.2 Pipeline Architectures 29
1.7.3 The Graphics Pipeline 30
1.7.4 Vertex Processing 31
1.7.5 Clipping and Primitive Assembly 31
1.7.6 Rasterization 32
1.7.7 Fragment Processing 32 vii



viii Contents

1.8 Programmable Pipelines 32

1.9 Performance Characteristics 33

1.10 OpenGL Versions and WebGL 34

Summary and Notes 36

Suggested Readings 36

Exercises 37

CHAPTER 2 GRAPHICS PROGRAMMING 39

2.1 The Sierpinski Gasket 39

2.2 Programming Two-Dimensional Applications 42

2.3 The WebGL Application Programming Interface 47
2.3.1 Graphics Functions 47
2.3.2 The Graphics Pipeline and State Machines 49
2.3.3 OpenGL and WebGL 50
2.3.4 The WebGL Interface 50
2.3.5 Coordinate Systems 51

2.4 Primitives and Attributes 53
2.4.1 Polygon Basics 55
2.4.2 Polygons in WebGL 56
2.4.3 Approximating a Sphere 57
2.4.4 Triangulation 58
2.4.5 Text 59
2.4.6 Curved Objects 60
2.4.7 Attributes 61

2.5 Color 62
2.5.1 RGB Color 64
2.5.2 Indexed Color 66
2.5.3 Setting of Color Attributes 67

2.6 Viewing 68
2.6.1 The Orthographic View 68
2.6.2 Two-Dimensional Viewing 71

2.7 Control Functions 71
2.7.1 Interaction with the Window System 72
2.7.2 Aspect Ratio and Viewports 73
2.7.3 Application Organization 74

2.8 The Gasket Program 75
2.8.1 Sending Data to the GPU 78
2.8.2 Rendering the Points 78
2.8.3 The Vertex Shader 79
2.8.4 The Fragment Shader 80



Contents ix

2.8.5 Combining the Parts 80
2.8.6 The initShaders Function 81
2.8.7 The init Function 82
2.8.8 Reading the Shaders from the Application 83

2.9 Polygons and Recursion 83

2.10 The Three-Dimensional Gasket 86
2.10.1 Use of Three-Dimensional Points 86
2.10.2 Naming Conventions 88
2.10.3 Use of Polygons in Three Dimensions 88
2.10.4 Hidden-Surface Removal 91

Summary and Notes 93

Suggested Readings 94

Exercises 95

CHAPTER 3 INTERACTION AND ANIMATION 99

3.1 Animation 99
3.1.1 The Rotating Square 100
3.1.2 The Display Process 102
3.1.3 Double Buffering 103
3.1.4 Using a Timer 104
3.1.5 Using requestAnimFrame 105

3.2 Interaction 106

3.3 Input Devices 107

3.4 Physical Input Devices 108
3.4.1 Keyboard Codes 108
3.4.2 The Light Pen 109
3.4.3 The Mouse and the Trackball 109
3.4.4 Data Tablets,Touch Pads, and Touch Screens 110
3.4.5 The Joystick 111
3.4.6 Multidimensional Input Devices 111
3.4.7 Logical Devices 112
3.4.8 Input Modes 113

3.5 Clients and Servers 115

3.6 Programming Event-Driven Input 116
3.6.1 Events and Event Listeners 117
3.6.2 Adding a Button 117
3.6.3 Menus 119
3.6.4 Using Keycodes 120
3.6.5 Sliders 121

3.7 Position Input 122



x Contents

3.8 Window Events 123

3.9 Picking 125

3.10 Building Models Interactively 126

3.11 Design of Interactive Programs 130

Summary and Notes 130

Suggested Readings 131

Exercises 132

CHAPTER 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS 135

4.1 Scalars, Points, and Vectors 136
4.1.1 Geometric Objects 136
4.1.2 Coordinate-Free Geometry 138
4.1.3 The Mathematical View: Vector and Affine Spaces 138
4.1.4 The Computer Science View 139
4.1.5 Geometric ADTs 140
4.1.6 Lines 141
4.1.7 Affine Sums 141
4.1.8 Convexity 142
4.1.9 Dot and Cross Products 142
4.1.10 Planes 143

4.2 Three-Dimensional Primitives 145

4.3 Coordinate Systems and Frames 146
4.3.1 Representations and N-Tuples 148
4.3.2 Change of Coordinate Systems 149
4.3.3 Example: Change of Representation 151
4.3.4 Homogeneous Coordinates 153
4.3.5 Example: Change in Frames 155
4.3.6 Working with Representations 157

4.4 Frames in WebGL 159

4.5 Matrix and Vector Types 163
4.5.1 Row versus Column Major Matrix Representations 165

4.6 Modeling a Colored Cube 165
4.6.1 Modeling the Faces 166
4.6.2 Inward- and Outward-Pointing Faces 167
4.6.3 Data Structures for Object Representation 167
4.6.4 The Colored Cube 168
4.6.5 Color Interpolation 170
4.6.6 Displaying the Cube 170
4.6.7 Drawing with Elements 171

4.7 Affine Transformations 172



Contents xi

4.8 Translation, Rotation, and Scaling 175
4.8.1 Translation 175
4.8.2 Rotation 176
4.8.3 Scaling 177

4.9 Transformations in Homogeneous Coordinates 179
4.9.1 Translation 179
4.9.2 Scaling 181
4.9.3 Rotation 181
4.9.4 Shear 183

4.10 Concatenation of Transformations 184
4.10.1 Rotation About a Fixed Point 185
4.10.2 General Rotation 186
4.10.3 The Instance Transformation 187
4.10.4 Rotation About an Arbitrary Axis 188

4.11 Transformation Matrices in WebGL 191
4.11.1 Current Transformation Matrices 192
4.11.2 Basic Matrix Functions 193
4.11.3 Rotation, Translation, and Scaling 194
4.11.4 Rotation About a Fixed Point 195
4.11.5 Order of Transformations 195

4.12 Spinning of the Cube 196
4.12.1 Uniform Matrices 198

4.13 Interfaces to Three-Dimensional Applications 200
4.13.1 Using Areas of the Screen 201
4.13.2 A Virtual Trackball 201
4.13.3 Smooth Rotations 204
4.13.4 Incremental Rotation 205

4.14 Quaternions 206
4.14.1 Complex Numbers and Quaternions 206
4.14.2 Quaternions and Rotation 207
4.14.3 Quaternions and Gimbal Lock 209

Summary and Notes 210

Suggested Readings 211

Exercises 211

CHAPTER 5 VIEWING 215

5.1 Classical and Computer Viewing 215
5.1.1 Classical Viewing 217
5.1.2 Orthographic Projections 217
5.1.3 Axonometric Projections 218



xii Contents

5.1.4 Oblique Projections 220
5.1.5 Perspective Viewing 221

5.2 Viewing with a Computer 222

5.3 Positioning of the Camera 224
5.3.1 Positioning of the Camera Frame 224
5.3.2 Two Viewing APIs 229
5.3.3 The Look-At Function 232
5.3.4 Other Viewing APIs 233

5.4 Parallel Projections 234
5.4.1 Orthogonal Projections 234
5.4.2 Parallel Viewing with WebGL 235
5.4.3 Projection Normalization 236
5.4.4 Orthogonal Projection Matrices 237
5.4.5 Oblique Projections 239
5.4.6 An Interactive Viewer 242

5.5 Perspective Projections 244
5.5.1 Simple Perspective Projections 245

5.6 Perspective Projections with WebGL 248
5.6.1 Perspective Functions 249

5.7 Perspective Projection Matrices 250
5.7.1 Perspective Normalization 250
5.7.2 WebGL Perspective Transformations 254
5.7.3 Perspective Example 256

5.8 Hidden-Surface Removal 256
5.8.1 Culling 258

5.9 Displaying Meshes 259
5.9.1 Displaying Meshes as Surfaces 262
5.9.2 Polygon Offset 264
5.9.3 Walking through a Scene 265

5.10 Projections and Shadows 265
5.10.1 Projected Shadows 266

5.11 Shadow Maps 270

Summary and Notes 271

Suggested Readings 272

Exercises 272

CHAPTER 6 LIGHTING AND SHADING 275

6.1 Light and Matter 276

6.2 Light Sources 279
6.2.1 Color Sources 280



Contents xiii

6.2.2 Ambient Light 280
6.2.3 Point Sources 281
6.2.4 Spotlights 282
6.2.5 Distant Light Sources 282

6.3 The Phong Reflection Model 283
6.3.1 Ambient Reflection 285
6.3.2 Diffuse Reflection 285
6.3.3 Specular Reflection 286
6.3.4 The Modified Phong Model 288

6.4 Computation of Vectors 289
6.4.1 Normal Vectors 289
6.4.2 Angle of Reflection 292

6.5 Polygonal Shading 293
6.5.1 Flat Shading 293
6.5.2 Smooth and Gouraud Shading 294
6.5.3 Phong Shading 296

6.6 Approximation of a Sphere by Recursive Subdivision 297

6.7 Specifying Lighting Parameters 299
6.7.1 Light Sources 299
6.7.2 Materials 301

6.8 Implementing a Lighting Model 301
6.8.1 Applying the Lighting Model in the Application 302
6.8.2 Efficiency 304
6.8.3 Lighting in the Vertex Shader 305

6.9 Shading of the Sphere Model 310

6.10 Per-Fragment Lighting 311

6.11 Nonphotorealistic Shading 313

6.12 Global Illumination 314

Summary and Notes 315

Suggested Readings 316

Exercises 316

CHAPTER 7 DISCRETE TECHNIQUES 319

7.1 Buffers 320

7.2 Digital Images 321

7.3 Mapping Methods 325

7.4 Two-Dimensional Texture Mapping 327

7.5 Texture Mapping in WebGL 333
7.5.1 Texture Objects 334



xiv Contents

7.5.2 The Texture Image Array 335
7.5.3 Texture Coordinates and Samplers 336
7.5.4 Texture Sampling 341
7.5.5 Working with Texture Coordinates 344
7.5.6 Multitexturing 345

7.6 Texture Generation 348

7.7 Environment Maps 349

7.8 Reflection Map Example 353

7.9 Bump Mapping 357
7.9.1 Finding Bump Maps 358
7.9.2 Bump Map Example 361

7.10 Blending Techniques 365
7.10.1 Opacity and Blending 366
7.10.2 Image Blending 367
7.10.3 Blending in WebGL 367
7.10.4 Antialiasing Revisited 369
7.10.5 Back-to-Front and Front-to-Back Rendering 371
7.10.6 Scene Antialiasing and Multisampling 371
7.10.7 Image Processing 372
7.10.8 Other Multipass Methods 374

7.11 GPGPU 374

7.12 Framebuffer Objects 378

7.13 Buffer Ping-Ponging 384

7.14 Picking 387

Summary and Notes 392

Suggested Readings 393

Exercises 394

CHAPTER 8 FROM GEOMETRY TO PIXELS 397

8.1 Basic Implementation Strategies 398

8.2 Four Major Tasks 400
8.2.1 Modeling 400
8.2.2 Geometry Processing 401
8.2.3 Rasterization 402
8.2.4 Fragment Processing 403

8.3 Clipping 403

8.4 Line-Segment Clipping 404
8.4.1 Cohen-Sutherland Clipping 404
8.4.2 Liang-Barsky Clipping 407



Contents xv

8.5 Polygon Clipping 408

8.6 Clipping of Other Primitives 410
8.6.1 Bounding Boxes and Volumes 410
8.6.2 Curves, Surfaces, and Text 412
8.6.3 Clipping in the Framebuffer 413

8.7 Clipping in Three Dimensions 413

8.8 Rasterization 416

8.9 Bresenham’s Algorithm 418

8.10 Polygon Rasterization 420
8.10.1 Inside–Outside Testing 421
8.10.2 WebGL and Concave Polygons 422
8.10.3 Fill and Sort 423
8.10.4 Flood Fill 423
8.10.5 Singularities 424

8.11 Hidden-Surface Removal 424
8.11.1 Object-Space and Image-Space Approaches 424
8.11.2 Sorting and Hidden-Surface Removal 426
8.11.3 Scan Line Algorithms 426
8.11.4 Back-Face Removal 427
8.11.5 The z-Buffer Algorithm 429
8.11.6 Scan Conversion with the z-Buffer 431
8.11.7 Depth Sort and the Painter’s Algorithm 432

8.12 Antialiasing 435

8.13 Display Considerations 437
8.13.1 Color Systems 437
8.13.2 The Color Matrix 441
8.13.3 Gamma Correction 441
8.13.4 Dithering and Halftoning 442

Summary and Notes 443

Suggested Readings 445

Exercises 445

CHAPTER 9 MODELING AND HIERARCHY 449

9.1 Symbols and Instances 450

9.2 Hierarchical Models 451

9.3 A Robot Arm 453

9.4 Trees and Traversal 456
9.4.1 A Stack-Based Traversal 457

9.5 Use of Tree Data Structures 460



xvi Contents

9.6 Animation 464

9.7 Graphical Objects 465
9.7.1 Methods, Attributes, and Messages 466
9.7.2 A Cube Object 467
9.7.3 Objects and Hierarchy 468
9.7.4 Geometric and Nongeometric Objects 469

9.8 Scene Graphs 470

9.9 Implementing Scene Graphs 472

9.10 Other Tree Structures 474
9.10.1 CSG Trees 474
9.10.2 BSP Trees 475
9.10.3 Quadtrees and Octrees 478

Summary and Notes 479

Suggested Readings 480

Exercises 480

CHAPTER 10 PROCEDURAL METHODS 483

10.1 Algorithmic Models 483

10.2 Physically Based Models and Particle Systems 485

10.3 Newtonian Particles 486
10.3.1 Independent Particles 488
10.3.2 Spring Forces 488
10.3.3 Attractive and Repulsive Forces 490

10.4 Solving Particle Systems 491

10.5 Constraints 494
10.5.1 Collisions 494
10.5.2 Soft Constraints 496

10.6 A Simple Particle System 497
10.6.1 Displaying the Particles 498
10.6.2 Updating Particle Positions 498
10.6.3 Collisions 499
10.6.4 Forces 500
10.6.5 Flocking 500

10.7 Agent-Based Models 501

10.8 Language-Based Models 503

10.9 Recursive Methods and Fractals 507
10.9.1 Rulers and Length 508
10.9.2 Fractal Dimension 509
10.9.3 Midpoint Division and Brownian Motion 510
10.9.4 Fractal Mountains 511



Contents xvii

10.9.5 The Mandelbrot Set 512
10.9.6 Mandelbrot Fragment Shader 516

10.10 Procedural Noise 517

Summary and Notes 521

Suggested Readings 521

Exercises 522

CHAPTER 11 CURVES AND SURFACES 525

11.1 Representation of Curves and Surfaces 525
11.1.1 Explicit Representation 525
11.1.2 Implicit Representations 527
11.1.3 Parametric Form 528
11.1.4 Parametric Polynomial Curves 529
11.1.5 Parametric Polynomial Surfaces 530

11.2 Design Criteria 530

11.3 Parametric Cubic Polynomial Curves 532

11.4 Interpolation 533
11.4.1 Blending Functions 534
11.4.2 The Cubic Interpolating Patch 536

11.5 Hermite Curves and Surfaces 538
11.5.1 The Hermite Form 538
11.5.2 Geometric and Parametric Continuity 540
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xviii Contents

11.10 The Utah Teapot 562

11.11 Algebraic Surfaces 565
11.11.1 Quadrics 565
11.11.2 Rendering of Surfaces by Ray Casting 566

11.12 Subdivision Curves and Surfaces 567
11.12.1 Mesh Subdivision 568

11.13 Mesh Generation from Data 571
11.13.1 Height Fields Revisited 571
11.13.2 Delaunay Triangulation 571
11.13.3 Point Clouds 575

11.14 Graphics API support for Curves and Surfaces 576
11.14.1 Tessellation Shading 576
11.14.2 Geometry Shading 577

Summary and Notes 577

Suggested Readings 578

Exercises 578

CHAPTER 12 ADVANCED RENDERING 581

12.1 Going Beyond Pipeline Rendering 581

12.2 Ray Tracing 582

12.3 Building a Simple Ray Tracer 586
12.3.1 Recursive Ray Tracing 586
12.3.2 Calculating Intersections 588
12.3.3 Ray-Tracing Variations 590

12.4 The Rendering Equation 591

12.5 Radiosity 593
12.5.1 The Radiosity Equation 594
12.5.2 Solving the Radiosity Equation 595
12.5.3 Computing Form Factors 597
12.5.4 Carrying Out Radiosity 599

12.6 Global Illumination and Path Tracing 600

12.7 RenderMan 602

12.8 Parallel Rendering 603
12.8.1 Sort-Middle Rendering 605
12.8.2 Sort-Last Rendering 606
12.8.3 Sort-First Rendering 610

12.9 Hardware GPU Implementations 611

12.10 Implicit Functions and Contour Maps 612
12.10.1 Marching Squares 613



Contents xix

12.10.2 Marching Triangles 617

12.11 Volume Rendering 618
12.11.1 Volumetric Data Sets 618
12.11.2 Visualization of Implicit Functions 619

12.12 Isosurfaces and Marching Cubes 621

12.13 Marching Tetrahedra 624

12.14 Mesh Simplification 625

12.15 Direct Volume Rendering 625
12.15.1 Assignment of Color and Opacity 626
12.15.2 Splatting 627
12.15.3 Volume Ray Tracing 628
12.15.4 Texture Mapping of Volumes 629

12.16 Image-Based Rendering 630
12.16.1 A Simple Example 630

Summary and Notes 632

Suggested Readings 633

Exercises 634

APPENDIX A INITIALIZING SHADERS 637

A.1 Shaders in the HTML file 637

A.2 Reading Shaders from Source Files 640

APPENDIX B SPACES 643

B.1 Scalars 643

B.2 Vector Spaces 644

B.3 Affine Spaces 646

B.4 Euclidean Spaces 647

B.5 Projections 648

B.6 Gram-Schmidt Orthogonalization 649

Suggested Readings 650

Exercises 650

APPENDIX C MATRICES 651

C.1 Definitions 651

C.2 Matrix Operations 652

C.3 Row and Column Matrices 653

C.4 Rank 654

C.5 Change of Representation 655



xx Contents

C.6 The Cross Product 657

C.7 Eigenvalues and Eigenvectors 657

C.8 Vector and Matrix Objects 659

Suggested Readings 659

Exercises 660

APPENDIX D SAMPLING AND ALIASING 661

D.1 Sampling Theory 661

D.2 Reconstruction 666

D.3 Quantization 668

References 669

WebGL Index 681

Subject Index 683



PREFACE

This book is an introduction to computer graphics with an emphasis on applica-
tions programming. The first edition, which was published in 1997, was some-

what revolutionary in using OpenGL and a top-down approach. Over the succeeding
16 years and 6 editions, this approach has been adopted by most introductory classes
in computer graphics and by virtually all the competing textbooks.

The sixth edition reflected the recent major changes in graphics software due to
major changes in graphics hardware. In particular, the sixth edition was fully shader-
based, enabling readers to create applications that could fully exploit the capabilities
of modern GPUs. We noted that these changes are also part of OpenGL ES 2.0, which
is being used to develop applications for embedded systems and handheld devices,
such as cell phones and tablets, and of WebGL, its JavaScript implementation. At the
time, we did not anticipate the extraordinary interest in WebGL that began as soon
as web browsers became available that support WebGL through HTML5.

As we continued to write our books, teach our SIGGRAPH courses, and pursue
other graphics-related activities, we became aware of the growing excitement about
WebGL. WebGL applications were running everywhere, including on some of the
latest smart phones, and even though WebGL lacks some of the advanced features
of the latest versions of OpenGL, the ability to integrate it with HTML5 opened up a
wealth of new application areas. As an added benefit, we found it much better suited
than desktop OpenGL for teaching computer graphics. Consequently, we decided to
do a seventh edition that uses WebGL exclusively. We believe that this edition is every
bit as revolutionary as any of the previous editions.

New to the Seventh Edition
WebGL is used throughout.

All code is written in JavaScript.

All code runs in recent web browsers.

A new chapter on interaction is included.

Additional material on render-to-texture has been added.

Additional material on displaying meshes has been added.

An efficient matrix–vector package is included.

An introduction to agent-based modeling has been added.

xxi



xxii Preface

A Top-Down Approach
Recent advances and the success of the first six editions continue to reinforce our
belief in a top-down, programming-oriented approach to introductory computer
graphics. Although many computer science and engineering departments now sup-
port more than one course in computer graphics, most students will take only a
single course. Such a course usually is placed in the curriculum after students have al-
ready studied programming, data structures, algorithms, software engineering, and
basic mathematics. Consequently, a class in computer graphics allows the instruc-
tor to build on these topics in a way that can be both informative and fun. We want
these students to be programming three-dimensional applications as soon as possi-
ble. Low-level algorithms, such as those that draw lines or fill polygons, can be dealt
with later, after students are creating graphics.

When asked “why teach programming,” John Kemeny, a pioneer in computer
education, used a familiar automobile analogy: You don’t have to know what’s under
the hood to be literate, but unless you know how to program, you’ll be sitting in the
back seat instead of driving. That same analogy applies to the way we teach computer
graphics. One approach—the algorithmic approach—is to teach everything about
what makes a car function: the engine, the transmission, the combustion process.
A second approach—the survey approach—is to hire a chauffeur, sit back, and see
the world as a spectator. The third approach—the programming approach that we
have adopted here—is to teach you how to drive and how to take yourself wherever
you want to go. As the old auto rental commercial used to say, “Let us put you in the
driver’s seat.”

Programming with WebGL and JavaScript
When Ed began teaching computer graphics 30 years ago, the greatest impediment
to implementing a programming-oriented course, and to writing a textbook for that
course, was the lack of a widely accepted graphics library or application programming
interface (API). Difficulties included high cost, limited availability, lack of generality,
and high complexity. The development of OpenGL resolved most of the difficulties
many of us had experienced with other APIs and with the alternative of using home-
brewed software. OpenGL today is supported on all platforms and is widely accepted
as a cross-platform standard.

A graphics class teaches far more than the use of a particular API, but a good API
makes it easier to teach key graphics topics, including three-dimensional graphics,
lighting and shading, client–server graphics, modeling, and implementation algo-
rithms. We believe that OpenGL’s extensive capabilities and well-defined architecture
lead to a stronger foundation for teaching both theoretical and practical aspects of
the field and for teaching advanced concepts, including texture mapping, composit-
ing, and programmable shaders.

Ed switched his classes to OpenGL about 18 years ago and the results as-
tounded him. By the middle of the semester, every student was able to write a
moderately complex three-dimensional application that required understanding of
three-dimensional viewing and event-driven input. In the previous years of teaching



Preface xxiii

computer graphics, he had never come even close to this result. That class led to the
first edition of this book.

This book is a textbook on computer graphics; it is not an OpenGL or WebGL
manual. Consequently, it does not cover all aspects of the WebGL API but rather
explains only what is necessary for mastering this book’s contents. It presents WebGL
at a level that should permit users of other APIs to have little difficulty with the
material.

Unlike previous editions, this one uses WebGL and JavaScript for all the exam-
ples. WebGL is a JavaScript implementation of OpenGL ES 2.0 and runs in most
recent browsers. Because it is supported by HTML5, not only does it provide com-
patibility with other applications but also there are no platform dependences; WebGL
runs within the browser and makes use of the local graphics hardware. Although
JavaScript is not the usual programming language with which we teach most pro-
gramming courses, it is the language of the Web. Over the past few years, JavaScript
has become increasingly more powerful and our experience is that students who are
comfortable with Java, C, or C++ will have little trouble programming in JavaScript.

All the modern versions of OpenGL, including WebGL, require every application
to provide two shaders written in the OpenGL Shading Language (GLSL). GLSL is
similar to C but adds vectors and matrices as basic types, along with some C++
features such as operator overloading. We have added a JavaScript library MV.js that
supports both our presentation of graphics functions and the types and operations
in GLSL.

Intended Audience
This book is suitable for advanced undergraduates and first-year graduate students
in computer science and engineering and for students in other disciplines who have
good programming skills. The book also will be useful to many professionals. Be-
tween us, we have taught well over 100 short courses for professionals; our experi-
ences with these nontraditional students have had a great influence on what we chose
to include in the book.

Prerequisites for the book are good programming skills in JavaScript, C, C++, or
Java; an understanding of basic data structures (linked lists, trees); and a rudimentary
knowledge of linear algebra and trigonometry. We have found that the mathematical
backgrounds of computer science students, whether undergraduates or graduates,
vary considerably. Hence, we have chosen to integrate into the text much of the linear
algebra and geometry that is required for fundamental computer graphics.

Organization of the Book
The book is organized as follows. Chapter 1 provides an overview of the field and
introduces image formation by optical devices; thus, we start with three-dimensional
concepts immediately. Chapter 2 introduces programming using WebGL. Although
the first example program that we develop (each chapter has one or more complete
programming examples) is two-dimensional, it is embedded in a three-dimensional
setting and leads to a three-dimensional extension. We introduce interactive graphics
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in Chapter 3 and develop event-driven graphics within the browser environment.
Chapters 4 and 5 concentrate on three-dimensional concepts. Chapter 4 is concerned
with defining and manipulating three-dimensional objects, whereas Chapter 5 is
concerned with viewing them. Chapter 6 introduces light–material interactions and
shading. Chapter 7 introduces many of the new discrete capabilities that are now
supported in graphics hardware and by WebGL. All these techniques involve working
with various buffers. These chapters should be covered in order and can be taught in
about 10 weeks of a 15-week semester.

The last five chapters can be read in almost any order. All five are somewhat
open-ended and can be covered at a survey level, or individual topics can be pursued
in depth. Chapter 8 surveys implementation. It gives one or two major algorithms for
each of the basic steps, including clipping, line generation, and polygon fill. Chap-
ter 9 includes a number of topics that fit loosely under the heading of hierarchical
modeling. The topics range from building models that encapsulate the relationships
between the parts of a model, to high-level approaches to graphics over the Inter-
net. Chapter 9 also includes an introduction to scene graphs. Chapter 10 introduces a
number of procedural methods, including particle systems, fractals, and procedural
noise. Curves and surfaces, including subdivision surfaces, are discussed in Chap-
ter 11. Chapter 12 surveys alternate approaches to rendering. It includes expanded
discussions of ray tracing and radiosity, and an introduction to image-based render-
ing and parallel rendering.

Appendix A presents the details of the WebGL functions needed to read, compile,
and link the application and shaders. Appendices B and C contain a review of the
background mathematics. Appendix D discusses sampling and aliasing starting with
Nyquist’s theorem and applying these results to computer graphics.

Changes from the Sixth Edition
The reaction of readers to the first six editions of this book was overwhelmingly
positive, especially to the use of OpenGL and the top-down approach. In the sixth
edition, we abandoned the fixed-function pipeline and went to full shader-based
OpenGL. In this edition, we move to WebGL, which is not only fully shader-based—
each application must provide at least a vertex shader and a fragment shader–but also
a version that works within the latest web browsers.

Applications are written in JavaScript. Although JavaScript has its own idiosyn-
crasies, we do not expect that students with experience in a high-level language, such
as Java, C, or C++, will experience any serious problems with it.

As we pointed out earlier in this preface, every application must provide its own
shaders. Consequently, programmable shaders and GLSL need to be introduced in
Chapter 2. Many of the examples produce the same output as in previous editions,
but the code is very different.

In the sixth edition, we eliminated a separate chapter on input and interaction,
incorporating the material in other chapters. With this edition, we revert to a separate
chapter. This decision is based on the ease and flexibility with which we can integrate
event-driven input with WebGL through HTML5.
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We have added additional material on off-screen rendering and render-to-
texture. These techniques have become fundamental to using GPUs for a variety of
compute-intensive applications such as image processing and simulation.

Given the positive feedback we’ve received on the core material from Chap-
ters 1–6 in previous editions, we’ve tried to keep the changes to those chapters to
a minimum. We see Chapters 1–7 as the core of any introductory course in computer
graphics. Chapters 8–12 can be used in almost any order, either as a survey in a one-
semester course or as the basis of a two-semester sequence.

Support Materials
The support for the book is on the Web, both through the author’s website www.cs
.unm.edu/~angel and at www.pearsonhighered.com. Support material that is avail-
able to all readers of this book includes

Sources of information on WebGL

Program code

Solutions to selected exercises

PowerPoint lectures

Figures from the book

Additional support materials, including solutions to all the nonprogramming
exercises, are available only to instructors adopting this textbook for classroom
use. Please contact your school’s Pearson Education representative or visit www
.pearsonhighered.com/irc for information on obtaining access to this material.
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CHAPTER1
GRAPHICS SYSTEMS
AND MODELS

It would be difficult to overstate the importance of computer and communication
technologies in our lives. Activities as wide-ranging as filmmaking, publishing,

banking, and education have undergone revolutionary changes as these technologies
alter the ways in which we conduct our daily activities. The combination of comput-
ers, networks, and the complex human visual system, through computer graphics,
has been instrumental in these advances and has led to new ways of displaying in-
formation, seeing virtual worlds, and communicating with both other people and
machines.

Computer graphics is concerned with all aspects of producing pictures or im-
ages using a computer. The field began humbly 50 years ago, with the display of a few
lines on a cathode-ray tube (CRT); now, we can generate images by computer that
are indistinguishable from photographs of real objects. We routinely train pilots with
simulated airplanes, generating graphical displays of a virtual environment in real
time. Feature-length movies made entirely by computer have been successful, both
critically and financially.

In this chapter, we start our journey with a short discussion of applications of
computer graphics. Then we overview graphics systems and imaging. Throughout
this book, our approach stresses the relationships between computer graphics and
image formation by familiar methods, such as drawing by hand and photography. We
will see that these relationships can help us to design application programs, graphics
libraries, and architectures for graphics systems.

In this book, we will use WebGL, a graphics software system supported by most
modern web browsers. WebGL is a version of OpenGL, which is the widely accepted
standard for developing graphics applications. WebGL is easy to learn, and it pos-
sesses most of the characteristics of the full (or desktop) OpenGL and of other im-
portant graphics systems. Our approach is top-down. We want you to start writing,
as quickly as possible, application programs that will generate graphical output. Af-
ter you begin writing simple programs, we shall discuss how the underlying graphics
library and the hardware are implemented. This chapter should give a sufficient over-
view for you to proceed to writing programs.

1
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1.1 APPLICATIONS OF COMPUTER GRAPHICS

The development of computer graphics has been driven both by the needs of the user
community and by advances in hardware and software. The applications of computer
graphics are many and varied; we can, however, divide them into four major areas:

1. Display of information

2. Design

3. Simulation and animation

4. User interfaces

Although many applications span two or more of these areas, the development of the
field was based largely on separate work in each.

1.1.1 Display of Information
Classical graphics techniques arose as a medium to convey information among
people. Although spoken and written languages serve a similar purpose, the human
visual system is unrivaled both as a processor of data and as a pattern recognizer.
More than 4000 years ago, the Babylonians displayed floor plans of buildings on
stones. More than 2000 years ago, the Greeks were able to convey their architectural
ideas graphically, even though the related mathematics was not developed until the
Renaissance. Today, the same type of information is generated by architects, mechan-
ical designers, and draftspeople using computer-based drafting systems.

For centuries, cartographers have developed maps to display celestial and geo-
graphical information. Such maps were crucial to navigators as these people explored
the ends of the earth; maps are no less important today in fields such as geographic
information systems. Now, maps can be developed and manipulated in real time over
the Internet.

During the past 100 years, workers in the field of statistics have explored tech-
niques for generating plots that aid the viewer in determining the information in a
set of data. Now, we have computer plotting packages that provide a variety of plot-
ting techniques and color tools that can handle multiple large data sets. Nevertheless,
it is still the human ability to recognize visual patterns that ultimately allows us to
interpret the information contained in the data. The field of information visualiza-
tion is becoming increasingly more important as we have to deal with understanding
complex phenomena, from problems in bioinformatics to detecting security threats.

Medical imaging poses interesting and important data analysis problems. Mod-
ern imaging technologies—such as computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound, and positron-emission tomography (PET)—generate
three-dimensional data that must be subjected to algorithmic manipulation to pro-
vide useful information. Color Plate 20 shows an image of a person’s head in which
the skin is displayed as transparent and the internal structures are displayed as
opaque. Although the data were collected by a medical imaging system, computer
graphics produced the image that shows the structures.



1.1 Applications of Computer Graphics 3

Supercomputers now allow researchers in many areas to solve previously in-
tractable problems. The field of scientific visualization provides graphical tools that
help these researchers interpret the vast quantity of data that they generate. In fields
such as fluid flow, molecular biology, and mathematics, images generated by conver-
sion of data to geometric entities that can be displayed have yielded new insights into
complex processes. For example, Color Plate 19 shows fluid dynamics in the mantle
of the earth. The system used a mathematical model to generate the data. We present
various visualization techniques as examples throughout the rest of the text.

1.1.2 Design
Professions such as engineering and architecture are concerned with design. Starting
with a set of specifications, engineers and architects seek a cost-effective and aesthetic
solution that satisfies the specifications. Design is an iterative process. Rarely in the
real world is a problem specified such that there is a unique optimal solution. Design
problems are either overdetermined, such that they possess no solution that satisfies
all the criteria, much less an optimal solution, or underdetermined, such that they
have multiple solutions that satisfy the design criteria. Thus, the designer works in an
iterative manner. She generates a possible design, tests it, and then uses the results as
the basis for exploring other solutions.

The power of the paradigm of humans interacting with images on the screen
of a CRT was recognized by Ivan Sutherland over 50 years ago. Today, the use of
interactive graphical tools in computer-aided design (CAD) pervades fields such as
architecture and the design of mechanical parts and of very-large-scale integrated
(VLSI) circuits. In many such applications, the graphics are used in a number of
distinct ways. For example, in a VLSI design, the graphics provide an interactive
interface between the user and the design package, usually by means of such tools
as menus and icons. In addition, after the user produces a possible design, other
tools analyze the design and display the analysis graphically. Color Plates 9 and 10
show two views of the same architectural design. Both images were generated with the
same CAD system. They demonstrate the importance of having the tools available to
generate different images of the same objects at different stages of the design process.

1.1.3 Simulation and Animation
Once graphics systems evolved to be capable of generating sophisticated images in
real time, engineers and researchers began to use them as simulators. One of the most
important uses has been in the training of pilots. Graphical flight simulators have
proved both to increase safety and to reduce training expenses. The use of special
VLSI chips has led to a generation of arcade games as sophisticated as flight simula-
tors. Games and educational software for home computers are almost as impressive.

The success of flight simulators led to the use of computer graphics for anima-
tion in the television, motion picture, and advertising industries. Entire animated
movies can now be made by computer at a cost less than that of movies made with
traditional hand-animation techniques. The use of computer graphics with hand an-
imation allows the creation of technical and artistic effects that are not possible with
either alone. Whereas computer animations have a distinct look, we can also generate
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photorealistic images by computer. Images that we see on television, in movies, and
in magazines often are so realistic that we cannot distinguish computer-generated or
computer-altered images from photographs. In Chapter 6, we discuss many of the
lighting effects used to produce computer animations. Color Plates 15 and 23 show
realistic lighting effects that were created by artists and computer scientists using an-
imation software. Although these images were created for commercial animations,
interactive software to create such effects is widely available.

The field of virtual reality (VR) has opened up many new horizons. A human
viewer can be equipped with a display headset that allows her to see separate images
with her right eye and her left eye so that she has the effect of stereoscopic vision. In
addition, her body location and position, possibly including her head and finger po-
sitions, are tracked by the computer. She may have other interactive devices available,
including force-sensing gloves and sound. She can then act as part of a computer-
generated scene, limited only by the image generation ability of the computer. For
example, a surgical intern might be trained to do an operation in this way, or an as-
tronaut might be trained to work in a weightless environment. Color Plate 22 shows
one frame of a VR simulation of a simulated patient used for remote training of med-
ical personnel.

Simulation and virtual reality have come together in many exciting ways in the
film industry. Recently, stereo (3D) movies have become both profitable and highly
acclaimed by audiences. Special effects created using computer graphics are part of
virtually all movies, as are more mundane uses of computer graphics such as removal
of artifacts from scenes. Simulations of physics are used to create visual effects ranging
from fluid flow to crowd dynamics.

1.1.4 User Interfaces
Our interaction with computers has become dominated by a visual paradigm that in-
cludes windows, icons, menus, and a pointing device, such as a mouse. From a user’s
perspective, windowing systems such as the X Window System, Microsoft Windows,
and the Macintosh Operating System differ only in details. More recently, millions of
people have become users of the Internet. Their access is through graphical network
browsers, such as Firefox, Chrome, Safari, and Internet Explorer, that use these same
interface tools. We have become so accustomed to this style of interface that we often
forget that what we are doing is working with computer graphics.

Although personal computers and workstations evolved by somewhat different
paths, at present they are indistinguishable. When you add in smart phones, tablets,
and game consoles, we have an incredible variety of devices with considerable com-
puting power, all of which can access the World Wide Web through a browser. For
lack of a better term, we will tend to use computer to include all these devices.

Color Plate 13 shows the interface used with a high-level modeling package.
It demonstrates the variety of tools available in such packages and the interactive
devices the user can employ in modeling geometric objects. Although we are familiar
with this style of graphical user interface, devices such as smart phones and tablets
have popularized touch-sensitive interfaces that allow the user to interact with every
pixel on the display.
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1.2 A GRAPHICS SYSTEM

A computer graphics system is a computer system; as such, it must have all the
components of a general-purpose computer system. Let us start with the high-level
view of a graphics system, as shown in the block diagram in Figure 1.1. There are six
major elements in our system:

1. Input devices

2. Central Processing Unit

3. Graphics Processing Unit

4. Memory

5. Framebuffer

6. Output devices

This model is general enough to include workstations and personal computers, inter-
active game systems, mobile phones, GPS systems, and sophisticated image genera-
tion systems. Although most of the components are present in a standard computer,
it is the way each element is specialized for computer graphics that characterizes this
diagram as a portrait of a graphics system. As more and more functionality can be
included in a single chip, many of the components are not physically separate. The
CPU and GPU can be on the same chip and their memory can be shared. Neverthe-
less, the model still describes the software architecture and will be helpful as we study
the various parts of computer graphics systems.

1.2.1 Pixels and the Framebuffer
Virtually all modern graphics systems are raster based. The image we see on the
output device is an array—the raster—of picture elements, or pixels, produced by
the graphics system. As we can see from Figure 1.2, each pixel corresponds to a lo-
cation, or small area, in the image. Collectively, the pixels are stored in a part of

Graphics
processor

Processor
(CPU)

CPU
memory

Framebuffer

GPU
memory

FIGURE 1.1 A graphics system.
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(a)

(b)

FIGURE 1.2 Pixels. (a) Image of Yeti the cat. (b) Detail of area around one eye
showing individual pixels.

memory called the framebuffer.1 The framebuffer can be viewed as the core ele-
ment of a graphics system. Its resolution—the number of pixels in the framebuffer—
determines the detail that you can see in the image. The depth, or precision, of the
framebuffer, defined as the number of bits that are used for each pixel, determines
properties such as how many colors can be represented on a given system. For exam-
ple, a 1-bit-deep framebuffer allows only two colors, whereas an 8-bit-deep frame-
buffer allows 28 (256) colors. In full-color systems, there are 24 (or more) bits per
pixel. Such systems can display sufficient colors to represent most images realistically.
They are also called true-color systems, or RGB color systems, because individual
groups of bits in each pixel are assigned to each of the three primary colors—red,
green, and blue—used in most displays. High dynamic range (HDR) systems use 12
or more bits for each color component. Until recently, framebuffers stored colors in
integer formats. Recent framebuffers use floating point and thus support HDR colors
more easily.

In a simple system, the framebuffer holds only the colored pixels that are dis-
played on the screen. In most systems, the framebuffer holds far more information,
such as depth information needed for creating images from three-dimensional data.
In these systems, the framebuffer comprises multiple buffers, one or more of which
are color buffers that hold the colored pixels that are displayed. For now, we can use
the terms framebuffer and color buffer synonymously without confusion.

1.2.2 The CPU and the GPU
In a simple system, there may be only one processor, the central processing unit
(CPU), which must perform both the normal processing and the graphical process-

1. Some references use frame buffer rather than framebuffer.
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ing. The main graphical function of the processor is to take specifications of graphical
primitives (such as lines, circles, and polygons) generated by application programs
and to assign values to the pixels in the framebuffer that best represent these entities.
For example, a triangle is specified by its three vertices, but to display its outline by the
three line segments connecting the vertices, the graphics system must generate a set of
pixels that appear as line segments to the viewer. The conversion of geometric entities
to pixel colors and locations in the framebuffer is known as rasterization or scan con-
version. In early graphics systems, the framebuffer was part of the standard memory
that could be directly addressed by the CPU. Today, virtually all graphics systems are
characterized by special-purpose graphics processing units (GPUs), custom-tailored
to carry out specific graphics functions. The GPU can be located on the motherboard
of the system or on a graphics card. The framebuffer is accessed through the graphics
processing unit and usually is on the same circuit board as the GPU.

GPUs have evolved to the point where they are as complex or even more complex
than CPUs. They are characterized both by special-purpose modules geared toward
graphical operations and by a high degree of parallelism—recent GPUs contain over
100 processing units, each of which is user programmable. GPUs are so powerful that
they can often be used as mini supercomputers for general-purpose computing. We
will discuss GPU architectures in more detail in Section 1.7.

1.2.3 Output Devices
Until recently, the dominant type of display (or monitor) was the cathode-ray tube
(CRT). A simplified picture of a CRT is shown in Figure 1.3. When electrons strike the
phosphor coating on the tube, light is emitted. The direction of the beam is controlled
by two pairs of deflection plates. The output of the computer is converted, by digital-
to-analog converters, to voltages across the x and y deflection plates. Light appears
on the surface of the CRT when a sufficiently intense beam of electrons is directed at
the phosphor.

If the voltages steering the beam change at a constant rate, the beam will trace
a straight line, visible to the viewer. Such a device is known as the random-scan,

y deflect

x deflectElectron gun

Focus

Phosphor

FIGURE 1.3 The cathode-ray tube (CRT).
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calligraphic, or vector CRT, because the beam can be moved directly from any
position to any other position. If intensity of the beam is turned off, the beam can
be moved to a new position without changing any visible display. This configuration
was the basis of early graphics systems that predated the present raster technology.

A typical CRT will emit light for only a short time—usually, a few milliseconds—
after the phosphor is excited by the electron beam. For a human to see a steady,
flicker-free image on most CRT displays, the same path must be retraced, or re-
freshed, by the beam at a sufficiently high rate, the refresh rate. In older systems,
the refresh rate is determined by the frequency of the power system, 60 cycles per sec-
ond or 60 hertz (Hz) in the United States and 50 Hz in much of the rest of the world.
Modern displays are no longer coupled to these low frequencies and operate at rates
up to about 85 Hz.

In a raster system, the graphics system takes pixels from the framebuffer and
displays them as points on the surface of the display in one of two fundamental
ways. In a noninterlaced system, the pixels are displayed row by row, or scan line
by scan line, at the refresh rate. In an interlaced display, odd rows and even rows
are refreshed alternately. Interlaced displays are used in commercial television. In an
interlaced display operating at 60 Hz, the screen is redrawn in its entirety only 30
times per second, although the visual system is tricked into thinking the refresh rate
is 60 Hz rather than 30 Hz. Viewers located near the screen, however, can tell the
difference between the interlaced and noninterlaced displays. Noninterlaced displays
are becoming more widespread, even though these displays must process pixels at
twice the rate of the interlaced display.

Color CRTs have three different-colored phosphors (red, green, and blue), ar-
ranged in small groups. One common style arranges the phosphors in triangular
groups called triads, each triad consisting of three phosphors, one of each primary.
Most color CRTs have three electron beams, corresponding to the three types of phos-
phors. In the shadow-mask CRT (Figure 1.4), a metal screen with small holes—the
shadow mask—ensures that an electron beam excites only phosphors of the proper
color.

Blue gun

Red gun

Green gun

Shadow mask

Green Red
Blue

Triad

FIGURE 1.4 Shadow-mask CRT.
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Horizontal
grid

Vertical
grid

Light-emitting
elements

FIGURE 1.5 Generic flat-panel display.

Although CRTs are still common display devices, they are rapidly being replaced
by flat-screen technologies. Flat-panel monitors are inherently raster based. Although
there are multiple technologies available, including light-emitting diodes (LEDs),
liquid-crystal displays (LCDs), and plasma panels, all use a two-dimensional grid
to address individual light-emitting elements. Figure 1.5 shows a generic flat-panel
monitor. The two outside plates each contain parallel grids of wires that are oriented
perpendicular to each other. By sending electrical signals to the proper wire in each
grid, the electrical field at a location, determined by the intersection of two wires, can
be made strong enough to control the corresponding element in the middle plate.
The middle plate in an LED panel contains light-emitting diodes that can be turned
on and off by the electrical signals sent to the grid. In an LCD display, the electrical
field controls the polarization of the liquid crystals in the middle panel, thus turning
on and off the light passing through the panel. A plasma panel uses the voltages on
the grids to energize gases embedded between the glass panels holding the grids. The
energized gas becomes a glowing plasma.

Most projection systems are also raster devices. These systems use a variety of
technologies, including CRTs and digital light projection (DLP). From a user perspec-
tive, they act as standard monitors with similar resolutions and precisions. Hard-copy
devices, such as printers and plotters, are also raster based but cannot be refreshed.

Stereo (3D) television displays use alternate refresh cycles to switch the display
between an image for the left eye and an image for the right eye. The viewer wears
special glasses that are coupled to the refresh cycle. 3D movie projectors produce
two images with different polarizations. The viewer wears polarized glasses so that
each eye sees only one of the two projected images. As we shall see in later chapters,
producing stereo images is basically a matter of changing the location of the viewer
for each frame to obtain the left- and right-eye views.

1.2.4 Input Devices
Most graphics systems provide a keyboard and at least one other input device. The
most common input devices are the mouse, the joystick, and the data tablet. Each




